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Telemetry data are often highly autocorrelated in space and time, thus challenging the assumption of independence between observations and 

subsequent inference using resource selection frameworks. Failure to correctly account for autocorrelation in tracking data can lead to overly 

narrow confidence intervals, bias in parameter estimates and model selection. 

Here we compare different common and newer approaches for mitigating the statistical problems posed by autocorrelation, using simulated 

datasets.

Data simulations

Models compared*

 

Inhomogeneous 

Poisson Process 

Regression 

Models 
(Dovers et al., 2023, 

Matthiopoulos et al., 2023)

 

𝑙𝑛 𝜆 𝑠𝑖 = 𝛽0 + 𝛽1𝐻𝑎𝑏𝑖𝑡𝑎𝑡(𝑠𝑖)

𝓁IPP ≈ ෍

𝑖=1

𝑛+𝑄

𝑦𝑖 ln 𝜆 𝑠𝑖 − 𝑤𝑖𝜆 𝑠𝑖  

𝑦𝑖 = ቊ
1 𝑖𝑓 𝑠𝑖  𝑖𝑠 𝑎𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 
0 𝑖𝑓 𝑠𝑖 𝑖𝑠 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒 𝑝𝑜𝑖𝑛𝑡

 

𝑤𝑖 = ൝
1−6 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 
𝑤𝑞 𝑓𝑜𝑟 𝑖 = 𝑛 + 1, … , 𝑛 + 𝑄 𝑎𝑛𝑑 𝑞 = 1, … , 𝑄

 

𝑤𝑞 = area of each triangle in the mesh

𝑄 = number of quadrature points

𝑛= number of points

𝑠𝑖= point events found in some spatial domain 

IPP assumes 

independence 

between points. 

Data thinning often 

used to meet 

independence 

assumption, resulting 

in loss of useful 

information and may 

lead to bias in 

parameter estimates.

Log-Gaussian 

Cox Process 

Regression 

Models
(Dovers et al., 2023)

𝑙𝑛 𝜆 𝑠𝑖 = 𝛽0 + 𝛽1𝐻𝑎𝑏𝑖𝑡𝑎𝑡 𝑠𝑖 + 𝜉(𝑠)

𝜉 𝑠 ≈ ෍

𝑗=1

𝑘

𝐵𝑗 𝑠 𝑏(𝑗)

𝜉 𝑠 = zero-mean latent Gaussian field

An IPP that includes a 

Gaussian field ξ(s) to 

account for 

unexplained spatial 

autocorrelation. 

Not usually designed 

to account for serial 

correlation in 

telemetry data.

Data thinning often 

used to meet 

independence 

assumption.

Resource 

selection 

functions with 

autocorrelation-

adjusted 

weights 
(Alston et al., 2022)

𝑙𝑛 𝜆 𝑠𝑖 = 𝛽0 + 𝛽1𝐻𝑎𝑏𝑖𝑡𝑎𝑡(𝑠𝑖)

𝓁RSF−𝑊 ≈ ෍

𝑖=1

𝑛

𝑤𝑖  ln 𝜆 𝑠𝑖 − න
𝐷

𝜆 𝑡 𝑑𝑡

𝑤𝑖 = 𝑤𝐴𝐾𝐷𝐸𝑖
𝑁

𝑤𝐴𝐾𝐷𝐸𝑖
 = weights optimized for non-parametric 

autocorrelated kernel density estimation at each 

sampled location

𝑁 = the effective sample size of the autocorrelated 

Gaussian area estimate

An IPP model that 

uses weights from 

non-parametric 

autocorrelated kernel 

density estimate 

(wAKDE) in the log-

likelihood, to mitigate 

pseudo-replication in 

the dataset without 

resorting to data 

thinning.

We simulated a binary habitat taking values 0 or 1 in a checkerboard pattern, to ensure homogeneous 

habitat availability, with no spatial bias relative to home range centre.

We then simulated 25 trips with 4 states), including:

- State 1 – outbound from home range centre,

- State 2 – searching behaviour (faster and more directed), associated with habitat = 0

- State 3 – foraging behaviour (slower, more sinuous), associated with habitat = 1

- State 4 – inbound trip, with probability increasing with time since departure.

Stage 2 and 3 were modelled using correlated random walks (CRWs) while stage 1 and 4, biased 

random walks (BRWs) were used (Michelot et al., 2017). At each time step, the state process is simulated 

based on a transition probability matrix. Step length and bearing are simulated using a gamma and 

von Mises distributions, respectively.

Estimates comparison

LGCP with Neighbourhood Cross-

Validation (NCV)

Model fitting by cross-validation,  based on splitting the 

data by arbitrary “neighbourhoods”. May be used to 

account for serial autocorrelation, by defining 

neighbourhoods to account for the spatio-temporal 

structure in the data. Implemented in mgcv with the new 

method="NCV" option (Wood, 2024) .

Can we use this approach to estimating animal 

resource selection from telemetry data? 

How sensitive to neighbourhood designs?

Both IPP and LGCP produce optimistically narrow 

confidence intervals when using the full dataset, widening 

as expected with data thinning. 

LGCP habitat selection estimates are biased relative to full 

IPP, likely due to spatial confounding.

RSF-W produces the widest confidence interval, but a 

much higher estimate than the IPP, indicating bias. A likely 

cause is the failure of the model to account for varying 

levels of movement autocorrelation among habitats.

*not an exhaustive list of methods
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Figure 1 – Simulated habitat suitability and tracking data, with a triangle mesh. The nodes of 
the triangles correspond to the quadrature points (available points).

Figure 2 –  Estimates for habitat parameter with 95% confidence intervals for the different models. The 
horizontal line corresponds to the estimate for the IPP, which is assumed to be unbiased 

Figure 3 –  Estimates for habitat parameter with 95% confidence intervals for the different 
models. The horizontal line corresponds to the estimate for the IPP, which is assumed to be 
unbiased. 
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